Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 418
Filter
1.
Sci Total Environ ; : 173032, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734099

ABSTRACT

Ferroptosis is frequently observed in fibrosis and diseases related to iron metabolism disorders in various mammalian organs. However, research regarding the damage mechanism of ferroptosis in the female reproductive system of avian species remains unclear. In this study, Muscovy female ducks were divided into three groups which were given purified water, 1 mg/L polyvinyl chloride microplastics (PVC-MPs) and 10 mg/L PVC-MPs for two months respectively, to investigate the ferroptosis induced by PVC-MPs caused ovarian tissue fibrosis that lead to premature ovarian failure. The results showed that the high accumulation of PVC-MPs in ovarian tissue affected the morphology and functional activity of ovarian granulosa cells (GCs) and subsequently caused the follicular development disorders and down-regulated the immunosignaling of ovarian steroidogenesis proteins 3ß-hydroxysteroid dehydrogenase (3ß-HSD), 17ß-hydroxysteroid dehydrogenase (17ß-HSD), CYP11A1 cytochrome (P450-11A1) and CYP17A1 cytochrome (P450-17A1) suggested impaired ovarian function. In addition, PVC-MPs significantly up-regulated positive expression of collagen fibers, significantly increased lipid peroxidation and malondialdehyde (MDA) level, along with encouraged overload of iron contents in the ovarian tissue were the characteristics of ferroptosis. Further, immunohistochemistry results confirmed that immunosignaling of ferroptosis related proteins Acyl-CoA synthetase (ACSL4), Cyclooxygenase 2 (COX2) and ferritin heavy chain 1 (FTH1) were significantly increased, but solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase (GPX4) were decreased by PVC-MPs in the ovarian tissue. In conclusion, our study demonstrates that PVC-MPs induced ferroptosis in the ovarian GCs, leading to follicle development disorders and ovarian tissue fibrosis, and ultimately contributing to various female reproductive disorders through regulating the proteins expression of ferroptosis.

2.
Heliyon ; 10(9): e29723, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707434

ABSTRACT

To reveal the role of gut microbiota (GM) in the occurrence and development of idiopathic central precocious puberty (ICPP) using 16S rDNA sequencing and bioinformatics analysis. The Danazol-induced ICPP model was successfully constructed in this study. ZBDH and GnRHa treatments could effectively inhibit ICPP in rats, as manifested by the delayed vaginal opening time, reduced weight, decreased uterine organ coefficient, and decreased uterine wall thickness and corpus luteum number, as well as remarkably reduced serum hormone (LH, FSH, and E2) levels. According to 16S rDNA sequencing analysis results, there was no significant difference in the GM community diversity across different groups; however, the composition of the microbial community and the abundance of the dominant microbial community were dramatically different among groups. ZBDH and GnRHa treatments could effectively reduce the abundance of Muribaculateae and Lactobacillus and promote Prevotella abundance. ZBDH and GnRHa were effective in treating Danazol-induced ICPP model rats. The therapeutic effects of ZBDH and GnRHa could be related to the changes in GM in rats.

3.
Sci Total Environ ; 927: 172395, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608882

ABSTRACT

PVC microplastics (PVC-MPs) are environmental pollutants that interact with cadmium (Cd) to exert various biological effects. Ducks belong to the waterfowl family of birds and therefore are at a higher risk of exposure to PVC-MPs and Cd than other animals. However, the effects of co-exposure of ducks to Cd and PVC-MPs are poorly understood. Here, we used Muscovy ducks to establish an in vivo model to explore the effects of co-exposure to 1 mg/L PVC-MPs and 50 mg/kg Cd on duck pancreas. After 2 months of treatment with 50 mg/kg Cd, pancreas weight decreased by 21 %, and the content of amylase and lipase increased by 25 % and 233 %. However, exposure to PVC-MPs did not significantly affect the pancreas. Moreover, co-exposure to PVC-MPs and Cd worsened the reduction of pancreas weight and disruption of pancreas function compared to exposure to either substance alone. Furthermore, our research has revealed that exposure to PVC-MPs or Cd disrupted mitochondrial structure, reduced ATP levels by 10 % and 18 %, inhibited antioxidant enzyme activity, and increased malondialdehyde levels by 153.8 % and 232.5 %. It was found that exposure to either PVC-MPs or Cd can induce inflammation and fibrosis in the duck pancreas. Notably, co-exposure to PVC-MPs and Cd exacerbated inflammation and fibrosis, with the content of IL-1, IL-6, and TNF-α increasing by 169 %, 199 %, and 98 %, compared to Cd exposure alone. The study emphasizes the significance of comprehending the potential hazards linked to exposure to these substances. In conclusion, it presents promising preliminary evidence that PVC-MPs accumulate in duck pancreas, and increase the accumulation of Cd. Co-exposure to PVC-MPs and Cd disrupts the structure and function of mitochondria and promotes the development of pancreas inflammation and fibrosis.


Subject(s)
Cadmium , Ducks , Microplastics , Oxidative Stress , Pancreas , Animals , Cadmium/toxicity , Oxidative Stress/drug effects , Pancreas/drug effects , Microplastics/toxicity , Fibrosis , Polyvinyl Chloride/toxicity , Water Pollutants, Chemical/toxicity
4.
Int J Neonatal Screen ; 10(2)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38651393

ABSTRACT

The aim of this study was to observe the outcomes of newborn screening (NBS) in a certain population by using next-generation sequencing (NGS) as a first-tier screening test combined with tandem mass spectrometry (MS/MS). We performed a multicenter study of 29,601 newborns from eight screening centers with NBS via NGS combined with MS/MS. A custom-designed panel targeting the coding region of the 142 genes of 128 inborn errors of metabolism (IEMs) was applied as a first-tier screening test, and expanded NBS using MS/MS was executed simultaneously. In total, 52 genes associated with the 38 IEMs screened by MS/MS were analyzed. The NBS performance of these two methods was analyzed and compared respectively. A total of 23 IEMs were diagnosed via NGS combined with MS/MS. The incidence of IEMs was approximately 1 in 1287. Within separate statistical analyses, the positive predictive value (PPV) for MS/MS was 5.29%, and the sensitivity was 91.3%. However, for genetic screening alone, the PPV for NGS was 70.83%, with 73.91% sensitivity. The three most common IEMs were methylmalonic academia (MMA), primary carnitine deficiency (PCD) and phenylketonuria (PKU). The five genes with the most common carrier frequencies were PAH (1:42), PRODH (1:51), MMACHC (1:52), SLC25A13 (1:55) and SLC22A5 (1:63). Our study showed that NBS combined with NGS and MS/MS improves the performance of screening methods, optimizes the process, and provides accurate diagnoses.

5.
Immun Inflamm Dis ; 12(4): e1250, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38661242

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19), a complex and multifaceted illness. COVID-19 is associated with various ocular manifestations including conjunctivitis, retinal vein occlusion and optic neuritis. However, the case of Vogt-Koyanagi-Harada (VKH) disease associated with SARS-CoV-2 is infrequent, and the specific association is still unclear. CASE PRESENTATION: In the present study, a 35-year-old female patient without any significant medical history presented with 1 week of bilateral blurred vision, occurring 2 weeks after a clinical course of COVID-19. Upon examination, both eyes exhibited bullous serous retinal detachments. She was diagnosed with incomplete VKH disease. Early diagnosis and treatment of VKH disease are essential for the visual prognosis of this aggressive disease. In this particular patient, ocular inflammatory signs and visual acuity improved via corticosteroid therapy. It is worth noting that the occurrence of VKH disease associated with SARS-CoV-2 is uncommon, and the specific connection between the two remains unknown. We review and summarize the clinical characteristics of VKH disease following SARS-CoV-2 infection, and discuss the potential mechanisms that may explain this phenomenon, based on similar studies previously reported. CONCLUSION: Despite the unclear causality, it is important for ophthalmologists and physicians to be recognizant of the possible association between VKH disease and COVID-19. SARS-CoV-2 may play a potential immunological triggering role in VKH disease. However, further in-depth research is necessary to investigate the clinical and epidemiological features, as well as the underlying mechanisms of this association.


Subject(s)
COVID-19 , Uveomeningoencephalitic Syndrome , Adult , Female , Humans , Adrenal Cortex Hormones/therapeutic use , COVID-19/complications , Uveomeningoencephalitic Syndrome/diagnosis , Uveomeningoencephalitic Syndrome/drug therapy , Visual Acuity
6.
Bioelectrochemistry ; 158: 108705, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38669975

ABSTRACT

Respiratory syncytial virus (RSV) poses a significant risk to children under two years old, necessitating rapid and accurate diagnostic methods. This study introduces an innovative approach using peptides and electrochemical potential scanning for RSV detection. By replacing enzymatic catalysis with electrochemical scanning, the method simplifies the process and reduces costs. Unbound peptides undergo potential-induced disulfide bridge opening, while target-bound peptides remain protected. After removing the target protein, copper ions and a reduced short peptide promote disulfide bridge formation, leading to crosslinking and passivation of the electrode surface. The degree of polymerization and passivation correlates with the target protein levels, generating a signal. This novel method offers enhanced sensitivity, specificity, and scalability, potentially revolutionizing RSV diagnostics in children under two years old. By addressing the limitations of traditional assays, it provides a cost-effective, rapid, and efficient approach for early RSV detection and improved clinical outcomes in this vulnerable population.

7.
Pain Res Manag ; 2024: 2042069, 2024.
Article in English | MEDLINE | ID: mdl-38585645

ABSTRACT

Objective: To assess the effectiveness of myofascial release (MFR) techniques on the intensity of headache pain and associated disability in patients with tension-type headache (TTH), cervicogenic headache (CGH), or migraine. Design: A systematic review and meta-analysis. Methods: Eight databases were searched on September 15, 2023, including PubMed, Scopus, Web of Science, CINAHL, Cochrane Library, Embase, CNKI, and Wanfang Database. The risk of bias was evaluated utilizing the Cochrane Risk of Bias 2 (RoB 2) tool. Results: Pooled results showed that MFR intervention significantly reduces pain intensity [SMD = -2.01, 95% CI (-2.98, -1.03), I2 = 90%, P < 0.001] and improves disability [SMD = -1.3, 95% CI (-1.82, -0.79), I2 = 74%, P < 0.001]. Subgroup analysis based on the type of headache revealed significant reductions in pain intensity for CGH [SMD = -2.01, 95% CI (-2.73, -1.29), I2 = 63%, P < 0.001], TTH [SMD = -0.86, 95% CI (-1.52, -0.20), I2 = 50%, P=0.01] and migraine [SMD = -6.52, 95% CI (-8.15, -4.89), P < 0.001] and in disability for CGH [SMD = -1.45, 95% CI (-2.07, -0.83), I2 = 0%, P < 0.001]; TTH [SMD = -0.98, 95% CI (-1.32, -0.65), I2 = 0%, P < 0.001] but not migraine [SMD = -2.44, 95% CI (-6.04, 1.16), I2 = 97%, P=0.18]. Conclusion: The meta-analysis results indicate that MFR intervention can significantly alleviate pain and disability in TTH and CGH. For migraine, however, the results were inconsistent, and there was only moderate quality evidence of disability improvement for TTH and CGH. In contrast, the quality of other evidence was low or very low.


Subject(s)
Migraine Disorders , Post-Traumatic Headache , Tension-Type Headache , Humans , Post-Traumatic Headache/therapy , Myofascial Release Therapy , Migraine Disorders/therapy , Headache , Tension-Type Headache/therapy , Pain
8.
PLoS One ; 19(4): e0298947, 2024.
Article in English | MEDLINE | ID: mdl-38626179

ABSTRACT

Research has demonstrated that circular RNAs (circRNAs) exert critical functions in the occurrence and progression of numerous malignant tumors. CircPRMT5 was recently reported to be involved in the pathogenesis of cancers. However, the potential role of circPRMT5 in osteosarcoma needs further investigation. In present study, our results suggested that circPRMT5 was highly upregulated in osteosarcoma cells and mainly localizes in the cytoplasm. CircPRMT5 promoted the proliferation, migration and invasion capacities of osteosarcoma cells, and suppressed cell apoptosis. Knockdown of circPRMT5 exerted the opposite effects. Mechanically, circPRMT5 promoted the binding of CNBP to CDK6 mRNA, which enhanced the stability of CDK6 mRNA and facilitated its translation, thereby promoting the progression of osteosarcoma. Knockdown of CDK6 reversed the promoting effect of circPRMT5 on osteosarcoma cells. These findings suggest that circPRMT5 promotes osteosarcoma cell malignant activity by recruiting CNBP to regulate the translation and stability of CDK6 mRNA. Thus, circPRMT5 may represent a promising therapeutic target for osteosarcoma.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Bone Neoplasms/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , Gene Expression Regulation, Neoplastic , Osteosarcoma/pathology , RNA, Circular/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
9.
Eur J Med Chem ; 270: 116379, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38588625

ABSTRACT

TRPV6, a Ca2+-selective member of the transient receptor potential vanilloid (TRPV) family, plays a key role in extracellular calcium transport, calcium ion reuptake, and maintenance of a local low calcium environment. An increasing number of studies have shown that TRPV6 is involved in the regulation of various diseases. Notably, overexpression of TRPV6 is closely related to the occurrence of various cancers. Research confirmed that knocking down TRPV6 could effectively reduce the proliferation and invasiveness of tumors by mainly mediating the calcium signaling pathway. Hence, TRPV6 has become a promising new drug target for numerous tumor treatments. However, the development of TRPV6 inhibitors is still in the early stage, and the existing TRPV6 inhibitors have poor selectivity and off-target effects. In this review, we focus on summarizing and describing the structure characters, and mechanisms of existing TRPV6 inhibitors to provide new ideas and directions for the development of novel TRPV6 inhibitors.


Subject(s)
Calcium , Neoplasms , Humans , Calcium/metabolism , Biological Transport , Ion Transport , Neoplasms/drug therapy , TRPV Cation Channels/metabolism , Calcium Channels/metabolism
10.
Chemosphere ; 358: 142086, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670510

ABSTRACT

Furan is generated in a wide array of heat-treated foods through thermal degradation, leading to severe impairments in the male reproductive system. The main objective of this study was to investigate the potential of pomegranate peel extract (PGPE) in mitigating testicular dysfunctions induced by furan. Male rats were categorized into four groups: control/untreated, PGPE, furan, and PGPE + furan group. The study results revealed that furan-treated rats exhibited significantly elevated aminotransferase and phosphatase activity, and also generated increased oxidative stress, and reduced antioxidative stress protein activity. Additionally, protein content levels (ALT, AST, ALP, and ACP) and activities of steroidogenic Leydig cell hydroxysteroid dehydrogenase (3ß-HSD and 17ß-HSD) enzymes were significantly decreased. Significant variations in testicular parameters, apoptotic genes (Bcl-2, P53, and Caspase3), inflammatory and anti-inflammatory cytokines (IL1ß, IL10), male sex hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, and sperm quality were also observed. Furthermore, testicular histological abnormalities were confirmed by biochemical and molecular modifications. Notably, PGPE pre-treated furan-intoxicated animals exhibited significant improvements in most of the assessed parameters compared to furan-treated groups. In conclusion, PGPE presents essential preventive measures and a novel pharmacological potential therapy against furan-induced testicular injury.

11.
Poult Sci ; 103(6): 103706, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38631227

ABSTRACT

Skeletal disorders can seriously threaten the health and the performance of poultry, such as tibial dyschondroplasia (TD) and osteoporosis (OP). Oligomeric proanthocyanidins (OPC) are naturally occurring polyphenolic flavonoid compounds that can be used as potential substances to improve the bone health and the growth performance of poultry. Eighty 7-day-old green-eggshell yellow feather layer chickens were randomly divided into 4 groups: basal diet and basal diet supplementation with 25, 50, and 100 mg/kg OPC. The results have indicated that the growth performance and bone parameters of chickens were significantly improved supplementation with OPC in vivo, including the bone volume (BV), the bone mineral density (BMD) and the activities of antioxidative enzymes, but ratio of osteoprotegerin (OPG)/receptor activator of NF-κB (RANK) ligand (RANKL) was decreased. Furthermore, primary bone marrow mesenchymal stem cells (BMSCs) and bone marrow monocytes/macrophages (BMMs) were successfully isolated from femur and tibia of chickens, and co-cultured to differentiate into osteoclasts in vitro. The osteogenic differentiation derived from BMSCs was promoted treatment with high concentrations of OPC (10, 20, and 40 µmol/L) groups in vitro, but emerging the inhibition of osteoclastogenesis by increasing the ratio of OPG/RANKL. In contrary, the osteogenic differentiation was also promoted treatment with low concentrations of OPC (2.5, 5, and 10 µmol/L) groups, but osteoclastogenesis was enhanced by decreasing the ratio of OPG/RANKL in vitro. In addition, OPG inhibits the differentiation and activity of osteoclasts by increasing the autophagy in vitro. Dietary supplementation of OPC can improve the growth performance of bone and alter the balance of osteoblasts and osteoclasts, thereby improving the bone health of chickens.

12.
Int J Biol Macromol ; 267(Pt 2): 131446, 2024 May.
Article in English | MEDLINE | ID: mdl-38621561

ABSTRACT

Infection with bovine leukemia virus (BLV) leads to enzootic bovine leukosis, the most prevalent neoplastic disease in cattle. Due to the lack of commercially available vaccines, reliable eradication of the disease can be achieved through the testing and elimination of BLV antibody-positive animals. In this study, we developed a novel competitive ELISA (cELISA) to detect antibodies against BLV capsid protein p24. Recombinant p24 protein expressed by Escherichia coli, in combination with the monoclonal antibody 2G11 exhibiting exceptional performance, was used for the establishment of the cELISA. Receiver-operating characteristic curve analysis showed that the sensitivity and specificity of the assay were 98.85 % and 98.13 %, respectively. Furthermore, the established cELISA was specific for detecting BLV-specific antibodies, without cross-reactivity to antisera for six other bovine viruses. Significantly, experimental infection of cattle and sheep with BLV revealed that the cELISA accurately monitors seroconversion. In a performance evaluation, the established cELISA displayed a high agreement with Western blotting and the commercial BLV gp51 cELISA kit in the detection of 242 clinical samples, respectively. In conclusion, the novel p24 cELISA exhibited the potential to be a reliable and efficient diagnostic tool for BLV serological detection with a broad application prospect.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Enzootic Bovine Leukosis , Enzyme-Linked Immunosorbent Assay , Leukemia Virus, Bovine , Leukemia Virus, Bovine/immunology , Animals , Enzyme-Linked Immunosorbent Assay/methods , Cattle , Antibodies, Viral/immunology , Antibodies, Monoclonal/immunology , Enzootic Bovine Leukosis/diagnosis , Enzootic Bovine Leukosis/immunology , Capsid Proteins/immunology , Sensitivity and Specificity , Recombinant Proteins/immunology , ROC Curve
13.
Sci Total Environ ; 929: 172392, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38608885

ABSTRACT

Cadmium (Cd) is a widely distributed environmental pollutant, primarily causing nephrotoxicity through renal proximal tubular cell impairment. Pyroptosis is an inflammation-related nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3)-dependent pathway for programmed cell death. We previously reported that inappropriate inflammation caused by Cd is a major contributor to kidney injury. Therefore, research on Cd-induced inflammatory response and pyroptosis may clarify the mechanisms underlying Cd-induced nephrotoxicity. In this study, we observed that Cd-induced nephrotoxicity is associated with NLRP3 inflammasome activation, leading to an increase in proinflammatory cytokine expression and secretion, as well as pyroptosis-related gene upregulation, both in primary rat proximal tubular (rPT) cells and kidney tissue from Cd-treated rats. In vitro, these effects were significantly abrogated through siRNA-based Nlrp3 silencing; thus, Cd may trigger pyroptosis through an NLRP3 inflammasome-dependent pathway. Moreover, Cd exposure considerably elevated reactive oxygen species (ROS) content. N-acetyl-l-cysteine, an ROS scavenger, mitigated Cd-induced NLRP3 inflammasome activation and subsequent pyroptosis. Mechanistically, Cd hindered the expression and deacetylase activity of SIRT1, eventually leading to a decline in SIRT1-p65 interactions, followed by an elevation in acetylated p65 levels. The administration of resveratrol (a SIRT1 agonist) or overexpression of Sirt1 counteracted Cd-induced RELA/p65/NLRP3 pathway activation considerably, leading to pyroptosis. This is the first study to reveal significant contributions of SIRT1-triggered p65 deacetylation to pyroptosis and its protective effects against Cd-induced chronic kidney injury. Our results may aid in developing potential therapeutic strategies for preventing Cd-induced pyroptosis through SIRT1-mediated p65 deacetylation.


Subject(s)
Cadmium , Epithelial Cells , Pyroptosis , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Pyroptosis/drug effects , Cadmium/toxicity , Rats , Epithelial Cells/drug effects , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Kidney Tubules , Transcription Factor RelA/metabolism , Acetylation , Inflammasomes/metabolism , Kidney Tubules, Proximal
14.
Foods ; 13(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672890

ABSTRACT

Zearalenone (ZEA), a mycotoxin widely present in crops and food, poses a major threat to animal and human health. The consumption of ZEA-contaminated food or feed causes intestinal damage. Therefore, exploring how to mitigate the intestinal damage caused by its ZEA is becoming increasingly important. Resveratrol (RSV), a polyphenol compound, mainly exists in Vitis vinifera, Polygonum cuspidatum, Arachis hypogaea, and other plants. It has potent anti-inflammatory and antioxidant activity. The primary objective of this study was to assess the defensive effects of RSV and its molecular mechanism on the intestinal mucosal injury induced by ZEA exposure in mice. The results showed that RSV pretreatment significantly reduced serum DAO and that D-lactate levels altered intestinal morphology and markedly restored TJ protein levels, intestinal goblet cell number, and MUC-2 gene expression after ZEA challenge. In addition, RSV significantly reversed serum pro-inflammatory factor levels and abnormal changes in intestinal MDA, CAT, and T-SOD. Additional research demonstrated that RSV decreased inflammation by blocking the translocation of nuclear factor-kappaB (NF-κB) p65 and decreased oxidative stress by activating the nuclear factor E2-related factor 2 (Nrf2) pathway and its associated antioxidant genes, including NQO1, γ-GCS, and GSH-PX. In summary, RSV supplementation attenuates intestinal oxidative stress, inflammation, and intestinal barrier dysfunction induced by ZEA exposure by mediating the NF-κB and Nrf2/HO-1 pathways.

15.
Sci Rep ; 14(1): 6475, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38499614

ABSTRACT

Wild medicinal plants are prominent in the field of Traditional Chinese Medicine (TCM), but their availability is being impacted by human activities and ecological degradation in China. To ensure sustainable use of these resources, it is crucial to scientifically plan areas for wild plant cultivation. Thesium chinense, a known plant antibiotic, has been overharvested in recent years, resulting in a sharp reduction in its wild resources. In this study, we employed three atmospheric circulation models and four socio-economic approaches (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) to investigate the primary environmental factors influencing the distribution of T. chinense. We also examined changes in its suitable area using the Biomod2 package. Additionally, we utilized the PLUS model to project and analyze future land use changes in climate-stable regions for T. chinense. Our planning for wild tending areas of T. chinense was facilitated by the ZONATION software. Over the next century, the climate-stable regions for T. chinense in China is approximately 383.05 × 104 km2, while the natural habitat in this region will progressively decline. Under the current climate conditions, about 65.06% of the habitats in the high suitable areas of T. chinense are not affected by future land use changes in China. Through hotspot analysis, we identified 17 hotspot cities as ideal areas for the wild tending of T. chinense, including 6 core hotspot cities, 6 sub-hotspot cities, and 5 fringe hotspot cities. These findings contribute to a comprehensive research framework for the cultivation planning of T. chinense and other medicinal plants.


Subject(s)
Plants, Medicinal , Santalaceae , Humans , Ecosystem , Climate , Medicine, Chinese Traditional , Climate Change
16.
Article in English | MEDLINE | ID: mdl-38538874

ABSTRACT

Diabetes is a major global health concern. This study aimed to investigate the correlation between differentially expressed lncRNAs in mice with type 2 diabetes mellitus (T2DM) and alterations in the intestinal flora and intestinal pathology. A T2DM mouse model was constructed by feeding mice a high-fat diet. Serum fat metabolism-related indices and insulin levels were biochemically detected. Serum inflammatory factors (IL-1ß, IL-6, TNF-α, IL-10) and endotoxin (LPS) were measured by ELISA. Histopathological changes in the small intestines of mice were observed by HE. The short-chain fatty acid (SCFA) content was analyzed using GC-MS. Analysis of altered intestinal flora in T2DM mice was performed using a 16sRNA sequencing assay. Differences in lncRNA expression profiles in small intestinal tissues were analyzed using RNA-seq assays. Spearman's correlation analysis was used to correlate the expression of candidate lncRNAs with changes in differential gut flora. Spearman's correlation analysis was used to analyze the correlation between the expression of candidate differentially expressed lncRNAs, small intestinal permeability, and glucose absorption. We found that serum levels of LPS, BUN, Scr, TC, TG, LDL-C, IL-1ß, IL-6, and TNF-α were elevated and levels of HDL-C, insulin, and IL-10 were decreased in T2DM mice. The ileal enterochromes of T2DM mice were disorganized and broken, the number of enterochromes was reduced, the local epithelial cells were necrotic, and the plasma membrane layer was locally absent. In addition, the protein expression of ZO-1 and occludin was decreased, and the protein expression of SGLT-1 and GLUT-2 was elevated in the model group compared to the control group. The levels of Acetic acid, Propionic acid and Butyric acid were decreased and the levels of Isobutyric acid and Isovaleric acid were increased, the abundance of beneficial bacteria was decreased and the abundance of harmful bacteria was increased in the feces of T2DM mice. RNA-seq identified nine differentially expressed lncRNAs (LINC00675, Gm33838, Gm11655, LOC6613926, LOC6613788, LOC6613791, LOC6613795, Arhgap27os3, and A330023F24Rik). In addition, we found significant correlations between differentially expressed lncRNAs and a variety of intestinal flora, as well as between small intestinal permeability and glucose absorption. A significant correlation was observed between differentially expressed lncRNAs in the intestinal tissues of T2DM mice and intestinal flora imbalance, small intestinal permeability, and glucose absorption.

17.
Chem Biol Interact ; 394: 110976, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38552764

ABSTRACT

It is widely accepted that humans are constantly exposed to micro-plastics and nano-plastics through various routes, including inhalation of airborne particles, exposure to dust, and consumption of food and water. It is estimated that humans may consume thousand to millions of micro-plastic particles, equating to several milligrams per day. Prolonged exposure to micro-plastics and nano-plastics has been linked to negative effects on different living organisms, including neurotoxicity, gastrointestinal toxicity, nephrotoxicity, and hepatotoxicity, and developmental toxicities. The main purpose of this review is to explore the effect of micro-plastics and nano-plastics on the male and female reproductive system, as well as their offspring, and the associated mechanism implicated in the reproductive and developmental toxicities. Micro-plastics and nano-plastics have been shown to exert negative effects on the reproductive system of both male and female mammals and aquatic animals, including developmental impacts on gonads, gametes, embryo, and their subsequent generation. In addition, micro-plastics and nano-plastics impact the hypothalamic-pituitary axes, leading to oxidative stress, reproductive toxicity, neurotoxicity, cytotoxicity, developmental abnormalities, poor sperm quality, diminishes ovarian ovulation and immune toxicity. This study discusses the so many different signaling pathways associated in the male and female reproductive and developmental toxicity induced by micro-plastics and nano-plastics.


Subject(s)
Reproduction , Signal Transduction , Female , Animals , Male , Reproduction/drug effects , Signal Transduction/drug effects , Humans , Microplastics/toxicity , Nanoparticles/toxicity
18.
Neuroscience ; 547: 28-36, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38552734

ABSTRACT

Depression is one of the most common forms of psychopathology, which is associated with gut microbiota dysfunction. Dihydroartemisinin (DHA) has been shown to regulate gut microbiota and ameliorate neuropathies, but whether it can be used to treat depression remains unclear. Our study found that DHA treatment raised the preference for sugar water in chronic unpredictable mild stress (CUMS)-induced mice and reduced the immobility time in open field, forced swimming and tail suspension experiments, and promoted doublecortin expression. Additionally, DHA up-regulated the diversity and richness of intestinal microbiota in depression-like mice, and restored the abnormal abundance of microbiota induced by CUMS, such as Turicibacter, Lachnospiraceae, Erysipelotrichaceae, Erysipelatoclostridium, Eubacterium, Psychrobacter, Atopostipes, Ileibacterium, Coriobacteriacea, Alistipes, Roseburia, Rikenella, Eggerthellaceae, Ruminococcus, Tyzzerella, and Clostridia. Furthermore, KEGG pathway analysis revealed that gut microbiota involved in the process of depression may be related to glucose metabolism, energy absorption and transport, and AMPK signaling pathway. These results indicated that DHA may play a protective role in CUMS-induced depression by mediating gut-microbiome.

19.
BMC Plant Biol ; 24(1): 173, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38443808

ABSTRACT

Polygonatum cyrtonema Hua is a traditional Chinese medicinal plant acclaimed for its therapeutic potential in diabetes and various chronic diseases. Its rhizomes are the main functional parts rich in secondary metabolites, such as flavonoids and saponins. But their quality varies by region, posing challenges for industrial and medicinal application of P. cyrtonema. In this study, 482 metabolites were identified in P. cyrtonema rhizome from Qingyuan and Xiushui counties. Cluster analysis showed that samples between these two regions had distinct secondary metabolite profiles. Machine learning methods, specifically support vector machine-recursive feature elimination and random forest, were utilized to further identify metabolite markers including flavonoids, phenolic acids, and lignans. Comparative transcriptomics and weighted gene co-expression analysis were performed to uncover potential candidate genes including CHI, UGT1, and PcOMT10/11/12/13 associated with these compounds. Functional assays using tobacco transient expression system revealed that PcOMT10/11/12/13 indeed impacted metabolic fluxes of the phenylpropanoid pathway and phenylpropanoid-related metabolites such as chrysoeriol-6,8-di-C-glucoside, syringaresinol-4'-O-glucopyranosid, and 1-O-Sinapoyl-D-glucose. These findings identified metabolite markers between these two regions and provided valuable genetic insights for engineering the biosynthesis of these compounds.


Subject(s)
Polygonatum , Polygonatum/genetics , Cluster Analysis , Flavonoids , Gene Expression Profiling , Machine Learning
20.
J Telemed Telecare ; : 1357633X241235982, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38425292

ABSTRACT

INTRODUCTION: At a rate of more than 30% annually, neck pain is a very prevalent musculoskeletal ailment that is second only to low back pain as the most common cause of disability. Most occurrences of neck pain are nonspecific. Telerehabilitation is regarded as a potentially effective healthcare approach in this setting. This review aims to evaluate how a telerehabilitation-based intervention affected individuals with nonspecific neck pain (NNP) in terms of pain and disability. METHODS: PubMed, Web of Science, Scopus, Embase, MEDLINE, Cochrane library, ClinicalTrials.gov, CNKI, and WanFang were consulted from inception to September 2023, with the inclusion of randomized controlled trials only. The experimental data were meta-analyzed using RevMan 5.3. RESULTS: The meta-analysis contained eight studies; there was no significant difference in pain improvement in patients with NNP by telerehabilitation compared to conventional care (SMD = -0.10, 95% CI: -0.48 to 0.28), but there was a significant effect on disability improvement (SMD = -0.41, 95% CI: -0.78 to -0.03). Telerehabilitation demonstrated more significant improvements in pain (SMD = -1.16, 95% CI: -1.99 to -0.32) and disability (MD = -3.78, 95% CI: -5.29 to -2.27) compared to minimal or no intervention. DISCUSSION: This study emphasizes the potential benefits of employing telerehabilitation in patients with NNP, especially in reducing pain intensity and improving disability. But additional study is required to fully grasp the potential of telerehabilitation in this field.

SELECTION OF CITATIONS
SEARCH DETAIL
...